Lysophosphatidic acid induces integrin activation in vascular smooth muscle and alters arteriolar myogenic vasoconstriction
نویسندگان
چکیده
In vascular smooth muscle cells (VSMC) increased integrin adhesion to extracellular matrix (ECM) proteins, as well as the production of reactive oxygen species (ROS) are strongly stimulated by lysophosphatidic acid (LPA). We hypothesized that LPA-induced generation of ROS increases integrin adhesion to the ECM. Using atomic force microscopy (AFM) we determined the effects of LPA on integrin adhesion to fibronectin (FN) in VSMC isolated from rat (Sprague-Dawley) skeletal muscle arterioles. In VSMC, exposure to LPA (2 μM) doubled integrin-FN adhesion compared to control cells (P < 0.05). LPA-induced integrin-FN adhesion was reduced by pre-incubation with antibodies against β1 and β3 integrins (50 μg/ml) by 66% (P < 0.05). Inhibition of LPA signaling via blockade of the LPA G-protein coupled receptors LPAR1 and LPAR3 with 10 μM Ki16425 reduced the LPA-enhanced adhesion of VSCM to FN by 40% (P < 0.05). Suppression of ROS with tempol (250 μM) or apocynin (300 μM) also reduced the LPA-induced FN adhesion by 47% (P < 0.05) and 59% (P < 0.05), respectively. Using confocal microscopy, we observed that blockade of LPA signaling, with Ki16425, reduced ROS by 45% (P < 0.05), to levels similar to control VSMC unexposed to LPA. In intact isolated arterioles, LPA (2 μM) exposure augmented the myogenic constriction response to step increases in intraluminal pressure (between 40 and 100 mm Hg) by 71% (P < 0.05). The blockade of LPA signaling, with Ki16425, decreased the LPA-enhanced myogenic constriction by 58% (P < 0.05). Similarly, blockade of LPA-induced ROS release with tempol or gp91 ds-tat decreased the LPA-enhanced myogenic constriction by 56% (P < 0.05) and 55% (P < 0.05), respectively. These results indicate that, in VSMC, LPA-induced integrin activation involves the G-protein coupled receptors LPAR1 and LPAR3, and the production of ROS, and that LPA may play an important role in the control of myogenic behavior in resistance vessels through ROS modulation of integrin activity.
منابع مشابه
a4b1 Integrin Activation of L-Type Calcium Channels in Vascular Smooth Muscle Causes Arteriole Vasoconstriction
A pathway for the regulation of vascular tone appears to involve coupling between integrins and extracellular matrix proteins or their fragments and the subsequent modulation of ion movement across the smooth muscle cell membrane. Here, we report that the activation of L-type voltage-activated Ca channels occurs through a novel interaction of a4b1 integrin with peptides containing the Leu-Asp-V...
متن کاملVascular smooth muscle Emilin-1 is a regulator of arteriolar myogenic response and blood pressure.
OBJECTIVE Emilin-1 is a protein of elastic extracellular matrix involved in blood pressure (BP) control by negatively affecting transforming growth factor (TGF)-β processing. Emilin1 null mice are hypertensive. This study investigates how Emilin-1 deals with vascular mechanisms regulating BP. METHODS AND RESULTS This study uses a phenotype rescue approach in which Emilin-1 is expressed in eit...
متن کاملCan integrins integrate vascular myogenic responses?
Vascular pathologies associated with the heart, brain, and peripheral blood vessels remain the leading cause of death in the Western world, accounting for over 960 000 deaths in 1999 in the United States alone.1 One of the difficulties in elucidating the mechanisms contributing to vessel disease has been in fully understanding how the vascular system maintains basal vascular tone and autoregula...
متن کاملExtracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites.
Integrin-mediated mechanotransduction in vascular smooth muscle cells (VSMCs) plays an important role in the physiological control of tissue blood flow and vascular resistance. To test whether force applied to specific extracellular matrix (ECM)-integrin interactions could induce myogenic-like mechanical activity at focal adhesion sites, we used atomic force microscopy (AFM) to apply controlled...
متن کاملCysteinyl leukotriene 1 receptors as novel mechanosensors mediating myogenic tone together with angiotensin II type 1 receptors-brief report.
OBJECTIVE Myogenic vasoconstriction is mediated by vascular smooth muscle cells of resistance arteries sensing mechanical stretch. Angiotensin II AT1 receptors and in particular AT1BRs in murine vascular smooth muscle cells have been characterized as mechanosensors that cannot fully account for myogenic vasoconstriction observed. Therefore, we aimed at uncovering novel vascular mechanosensors b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014